Chapter 10.1 part 2

Chapter 10 Axittmertic in Integral Domains
In Chapters (H4, The Fundamental Theorem of Arithmetic was proved for $Z \# F[x]$ (F is a field)

Every mon-zero non-unit element of the ring can be written as a product of irreducibles/primes in an essentially unique way.
"Essentially unique" - up to units and permutations
units - the ring must have identity
permutations - the ring is commentative
exception of zero hints that we possibly want to consider rings without zero divisors.
R - ring - is an integral domain.
Examples
\mathbb{Z} - the ring of integers (Chapter I)
$F[x]$ (F is a field) (Chape rH)
$\nabla_{L}[x]$

$$
\begin{aligned}
& h a+b i \mid a, b \in \mathbb{Z}\} \subset \mathbb{C} \\
& \{a+b \sqrt{7} \mid a, b \in \pi / \subset \mathbb{R} \subset \mathbb{C}
\end{aligned}
$$

Divisibility $a(b$ means there exist $c \in R$ such that $b=a c$
Units - divisors of $\left.\right|_{R} \in R \quad\left(u v=l_{R}, u, v \in R\right)$ $v=u^{-1}$
$h-1,1\}$ in ∇
$h a \in F \mid a \neq O_{F} y$ in $F[x]$ polynomials of degree zero
Associates a and b are associates means $a \neq O_{R} b \neq O_{R} \quad a=b u, u$ is a unit
Grey non-zero element of R is divisible by all units and all associates of the element.
Irreducible $p \in R$ is called irreducible if p is divisible by

$$
p \neq O_{R}
$$

p-not a unit
nothing besides units and associates of p.

Th 10.1 Let $p \in R, p \neq O_{R}$. Then p is irreducible if whenever $p=85$, then r or s is a unit (not both).

Section 10.1 Euclidean Domains
Integral domains where The Fundamental Theorem of Arithmetic can be proved by the same argument as in Chapters 1 \$4.
Argument - Euclid's Lemma - assumes a way of measurement.

Def An integral domain R is a Euclidean domain if there is a function

$$
\text { 8:R\hOR } \left.\longrightarrow \nmid h \in \mathbb{Z}_{\angle} \mid h \geqslant 0\right\}
$$

which satisfies the follonsing requirements
(i) If $a, b \in R$, both non-zero, then

$$
\delta(a) \leq \delta(a b)
$$

(ii) If $a, b \in R, b \neq O_{R}$, then there exist $q, r \in R$ such that $a=b q+r$ and either $r=O_{R}$ or $\delta(r)<\delta(b)$

Tramples $\pi_{2} \quad \delta(a)=|a|$

$$
F[x] \quad \delta(f)=\operatorname{deg} f
$$

Remark Only existence of q and r are required. Uniqueness way be not true and does not matter
$\left.h a+b_{i} \mid a_{1} b \in \nabla_{L}\right\} \subset \mathbb{C}$ - the ring of Sacessian integers $\delta(a+b i)=a^{2}+b^{2}$
Thl0.7 The Imendamental Theorem of Arithmetic holds in every Euclidean domain.

The description of units in a Euclidean domain
Th 10.2 Let R be a Euclidean domain. Let $u \in R, u \neq O_{R}$.
The following three conditions ave equivalent
(1) u is a unit in R
(2) $\delta(u)=\delta\left(l_{p}\right)$
(3) $\delta(c)=\delta(c u)$ for some $c \in R$

Pf (1) implies (2)
We use nothing but $\delta(a) \leqslant \delta(a b) \quad \xi$ (i) in the definition

$$
\begin{array}{lll}
a=I_{R} b=u: & \delta\left(I_{R}\right) \leqslant \delta\left(1_{R} u\right)=\delta(u) & \delta\left(I_{R}\right) \leqslant \delta(u) \\
a=u \quad b=u^{-1}: & \delta(u) \leqslant \delta\left(u u^{-1}\right)=\delta\left(I_{R}\right) & \delta(u) \leqslant \delta\left(I_{R}\right)
\end{array}
$$

(2) implies (3)
pick $C=I_{R}$ and just write (2) down.
(3) implies (1)

We use $a=b q+r$, either $r=O_{R}$ of $\delta(r)<\delta(b)$ with $a=c \quad b=u c$:

$$
c=u e q+r \text {, either } r=O_{R} \text { or } \delta(r)<\delta(u c)
$$

It suffices to prove that $r=O_{R}$, because this implies $c=u c q$ implies $I_{R}=u q$, so u is a unit.

Assume $r \neq O_{R}$ to find a contradiction
$c=u c q+r \quad \delta(r)<\delta(u c)=\delta(e) \quad$ by assumption (3)
$r=c-u c q=c\left(l_{R}-u q\right)$ implies by (i) in the definition of Euclidean domain

$$
\delta(r) \geqslant \delta(c)
$$

The inequalities contradict each other proving that the assumption $x \neq O_{R}$ was wrong.
Remark $\delta(c)=\delta(c u)$ for same $c \in R$ implies that
u is a unit in R. That implies $\delta(c)=\delta(c u)$ for any non-zeroceR

From this point on, the way to the Fundamental Theorem of Arithmetic - Th 10.7 in an arbitrary Euclidean domain
follows the lines of Chapters $1 \$ 4$.
One defines ged (non-unique - up to a multiplication by a unit), finds an alternative description of ged (by the measurement 8).
Thlo.5 $a \mid b c, \begin{aligned} & (a, b)=l_{R} \\ & \text { relatively }\end{aligned} \quad\left(I_{R}\right.$ is among them) imply $a \mid c$. relatively
prime prime
Cor 10.6 pis irreducible $p \in R$, plebe implies plo or ple (or both)

The presence of 8 also helps with the existence clause in Th 10.7 (the argument is similar to those for ∇_{L} and $F[x]$).

New example - Gaussian integers - $\mathbb{Z}[i]=\mathbb{Z}[\sqrt{-1}]=\{a+b i \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$

$$
\delta(a+i b)=a^{2}+b^{2}
$$

Not in general, though:

$$
\begin{aligned}
& \text { ingenerax, though: } \\
& \left.\pi[\sqrt{-15}]=h a+b \sqrt{-15} \mid a, b \in \pi_{L}\right\} \subset \mathbb{C}
\end{aligned}
$$

A similar $\delta(a+b \sqrt{-15})=a^{2}+15 b^{2}$ will not wake an Euclidean domain out of $\mathbb{Z}[\sqrt{-15}]$.

